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Signal Characterization

» Assumption: Many methods take {z(n)} to be deterministic
» Reality: Real world signals are usually statistical in nature

» Thus,

~x(—1),2(0),z(1),...
can be interpreted as a sequence of random variables.
» We begin by analyzing each observation z(n) as a R.V.
» Then, to capture dependencies, we consider random vectors

~xz(n),z(n+1),...,.x(n+N—-1),z(n+N),...

z(n)
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Random Variables

Definition

For a space S, the subsets, or events of .S, have associated probabilities.
» To every event 9, we assign a number z(4), which is called a R.V.
» The distribution function of x is

Pr{z <z} = Fy(z9) —o0<xzp<o0
Properties:

1. F(+o0) =1, F(—00)=0

2. F(x) is continuous from the right

3. Pr{z1 <z <z} = F(x2) — F(x1)
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Example
Fair toss of two coins: H=heads, T=Tails

Define numerical assignments:

Events(d) | Prob. | X(6) | Y(9)
HH 1/4 1 |-100
HT 1/4 2 | -100
TH 1/4 3 |-100
TT 1/4 4 | 500

This assignments yield different distribution functions

Fy(2) = Pr{HH HT}
F,(2) = Pr{HH HT TH}

How do we attain an intuitive interpretation of the distribution function?
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Probability

Distribution Plots
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Note progertiels hold:
1. F(+o00)=1, F(—00)=0
2. F(x) is continuous from the right

3. Pr{z; <z <o} =F(x2) — F(x1)
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Definition
The probability density function is defined as,
_dF()
or F(x)= /w f(z)dz
—00

Thus F(oo):1:>/_o:of(x)da::1

Types of distributions:
» Continuous: Pr{z =20} =0 Vzq
» Discrete: F(x;)— F(x;)=Pr{z=x;} =P,
» In which case f(x) =), Pid(x —z;)
» Mixed: discontinuous but not discrete
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Distribution examples

Uniform: = ~U(a,b) a<b

-
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Gaussian: z ~ N(u,0)

f(x) F(x)
1
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Probability

Gaussian Distribution Example

Example
Consider the Normal (Gaussian) distribution PDF and CDF for
pw=0,02=0.2,1.0,5.0 and p= 2,02 =0.5
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Binomial: x ~ B(p,q) p+q=1
Example
Toss a coin n times. What is the probability of getting k heads?

For p+4q =1, where g is probability of a tail, and p is the probability of a
head:

Priz=k} = @pkqn * [NOTE;(Z):M]

n

= flx) = Y <Z>pkq"k5($—k)

k=0

m
= F(z) = Z()k”k m<x<m-+1
k=0
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Binomial Distribution Example |

Example

Toss a coin n times. What is the probability of getting k heads? For
n=9,p=q= % (fair coin)

0.3
f(x)
. . N F(x)
0.2
* *
0.5
0.1 4
* *
* *
0 + 0

0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 1



Probability ARE FSAN/ELEG815

Binomial Distribution Example Il

Example

Toss a coin n times. What is the probability of getting k heads? For
n=20,p=0.5,0.7 and n =40,p = 0.5.

9 ] o
e * p=0.5 and n=20
= p=0.7 and n=20
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Conditional Distributions

Definition
The conditional distribution of x given event “M" has occurred is

Fip(xo|M) = Pr{z <zo|M}

_ Pr{z <9, M}
n Pr{M}
Example
Suppose M = {z < a}, then
Pr{z <zo,M}
Felao| M) = Pr{z <a}

If o > a, what happens?
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Special Cases

Special Case: 2o > a
Pr{z <xp,z <a} =Pr{z <a}

Pr{iz <xg, M} Pr{z<a}
Pr{izr<a}  Pr{z<a}

= Fyp(zo|M) =

Special Case: zp <a

Pr{iz <xo, M} Pr{z <o}
Pr{ir<a}  Pr{z<a}

Fm(xO)

Fy(a)

= Fp(xg|M) =
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Conditional Distribution Example

Example
Suppose

F(x)

FSAN/ELEG815

a
What does F, (x| M) look like? Note M = {x < a}.

Fx(ﬂﬁo)
= (20| M) = { 1Fm(a) t i a
a<zx
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F(x)
1
FXMX <a) ﬁ
S SE )

a

» Distribution properties hold for conditional cases:
» Limiting cases: F'(co|M) =1 and F(—oo|M)=0
» Probability range: Pr{zo <z <xi|M} = F(x1|M)— F(xo|M)

» Density—distribution relations:

flaiary = 2XERD

FlaolM) = [ 2f(x|M)dx
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Example (Fair Coin Toss)
Toss a fair coin 4 times. Let = be the number of heads. Determine Pr{z = k}.

Recall

Pr{iz =k} = (Z)pkq”_k

vn - ()0

Pr{m = 0} = Pr{:p = 4} —

In this case

i

Pr{r =1} = Pr{z=3}=

Prir=2) =
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Density and Distribution Plots for Fair Coin (n =4) Ex.

0.5

f(x) F(x) 15 1
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What type of distribution is this? Discrete. Thus,

F(x;))—F(z;)=Pr{x =2;} = P

F(z)= /_xoof(x)dx = /_xmz:]%é(x—mi)dx
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Conditional Case

Example (Conditional Fair Coin Toss)

Toss a fair coin 4 times. Let x be the number of heads. Suppose
M = |at least one flip produces a head]. Determine Pr{x = k|M}.
Recall,

Pr{x =k, M}

Priv = KM} = =5 0

Thus first determine Pr{M}

Pr{M} = 1—Pr{No heads}

1
- 1-—
16

15

16
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Next determine Pr{x = k|M} for the individual cases, kK =0,1,2,3,4

Priz = 0|M} — Pr{gr{:j&}f\ﬂ:o
Priz=1|M} = W

Pr{z=1} 1/4 4

Pr{M} — 15/16 15
Pr{zr=2} 3/8 6

Pr{z=2|M} = - =
v =2|M} Pr{M} _ 15/16 15
4
Pr{x =3|M} = G

1
Pr{z—4M} — —
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Conditional and Unconditional Density Functions

05 0.5
’ M
) .| M 5
04 - s
.3
8
03 0.3 . i . i
ol ol . 5 5
0.2 4 4 ’
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0.1 . 1
1 o1 15
o 16 16 0
1 2 4
0 1 2 3 4 5 0 3 5

Are they proper density functions?
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Total Probability and Bayes' Theorem
Let My, M, ..., M, forms a partition of S, i.e.

UMZ:S and Man]:¢

i#]
Then
F(z) = ZFx($|Mz‘)PF(Mi)
f@) = > fala| M;)Pr(M;)
Aside

Pr{A,B} Pr{B,A}Pr{A} Pr{B|A}Pr{A}

PRAIBY =5 BT T P BIPHA]  Pr(B)
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Bayes' Theorem Example

Consider the following events and their probabilities:

A: patient has liver disease. Pr{A} =0.1.

B: patient is an alcoholic. Pr{B} = 0.05.

Among all patients diagnosed with liver disease, 7% are alcoholics.
Pr{B|A} = 0.07.

Determine: patients’ probability of having liver disease if they are an
alcoholic, i.e. Pr{A|B}.

Using the Bayes' Theorem:

Pr{B|A}Pr{A} 0.07x0.1 0.14
Pr{B} 005

Pr{A|B} =
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Mean, Median and variance

Definitions

Mean FE{z} = /Oo xf(z)dx

Conditional Mean FE{x|M} = /OO xf(x|M)dx
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Median

Definitions

Median=m = /m f(z)dx

Example

Let x ~ Aexp ** U(z). Then m = ln/(\Q

Median

=  Pr{z<m}

—

FSAN/ELEGS81

7 rayir =

m

Pr{z >m}
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Definition (Variance)
Variance 02:/_ (x—n)?f(z)dx

where n = E{x}. Thus,
0? = E{(x—n)*} = B{a*} - B*{x}

Example
For x ~ N(n,0?), determine the variance.

@) = e T

xrT) = —¢€ 20
2ro

Note: f(x) is symmetric about x =n= E{z} =1

Also
_(a—n)?

/ f(.'L')dx =1 :>/ e 202 dl‘ = 2m0
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)2

oo _(z=n
/ e 202 dx =270

Differentiating w.r.t. o:

o (x—n)? _@z-—n?
:,/ (w—m)® L= o

—00 O'3

Rearranging yields

or
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Definition (Moments)

» Moments

» Central Moments

o= E{w=n)"} = [ (@ =n)"f(a)da
From the binomial theorem
b = E{(m—n)”}zE{i (Z)xk(—n)”_"“}
_ = (n mu(— n—k
,g(k> k(=)

= po=1, m=0, pp=0% uzg=mz—3nmg+2n°
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Bivariate Statistics
Given two RVs, x and y, the bivariate (joint) distribution is given by

F(z0,y0) = Pr{z <20,y < yo}

aY
Yo

v

Xo

Properties:
> F(—o0,y)=F(x,—00) =
» F(oo,00) =1
> Fx(x):F(ﬂl',OO), Fy(y):F(OO,y)



Probability ARE FSAN/ELEG815

Special Cases

Case 1M ={x; <z <x2,y <yo} B

= Pr{M} = F(x2,y0) — F(x1,y0)

Case 22M = {x < p,y1 Sy <y} LK

= Pr{M} = F(zo,y2) — F(z0,y1)
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Case 3: M ={z1 <z <uz2,y1 <y <y} Then

2y

Y2

Y1

xV

X1 X2

and
Pr{M} = F(x2,y2) — F(x1,y2) — F(z2,y1) + F(z1,11)
1

Added back because this region was subtracted twice
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Definition (Joint Statistics)

O?F (x,y)

flz,y) = 920y

and

Flay) = [ [ fa.fdads
In general, for some region M, the joint statistics are
Pr{(e,y) € M} = [ [ f(x,y)drdy
Marginal Statistics: Fj(z) = F(x,00) and]\j?y(y) = F(00,y)
= folo) = [ fydy
= fyly) = /_O:Of(x,y)dx
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Independence

Definition (Independence)

Two RVs x and y are statistically independent if for arbitrary events (regions)
re€Aandy€e B,

Pr{z € A,y € B} =Pr{z € A}Pr{y € B}

Letting A ={z <0} and B ={y <o}, we see x and y are independent iff

and by differentiation

fm,y(xay) - fx(x)fy(y)
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Joint Moments

For RVs = and y and function z = g(z,y)

E{z} = /_O:Ozfz(z)dz
E{g(z,y)} = /_O:O/_O:Og(w,wf(%y)dxdy

Definition (Covariance)
For RVs x and v,

Oxy - x>y)
[ 77 )(y —ny)]
[zy] = 12 Ely] = ny Elx] +n2ny

[1’ y] 773:7721

I
E%/\

I
&&= Q
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Definition (Correlation Coefficient)

The correlation coefficient is given by

Note that

0 < FE{lalz—n)+y—n)*}
= E{(z—n)*}a® +2E{(x —n.)(y —ny) }a+ E{(y —n,)*}
= a§a2+20{pya—l—0§

This is a positive quadratic function of a
= Roots are imaginary and discriminant is non-positive

VAC%, — 40202 — imaginary

:>4C£y—4a§a§ < 0
iCﬁy < 0'32:

2
Ty
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Thus,

C
|Cay| < 0goy and |r|= m <1

Definition (Uncorrelated)

Two RVs are uncorrelated if their covariance is zero

Cry = 0
=>r = Cay =0
040y
E{ry} — E{x} E{y} _

0

010y
= E{zy} = E{z}E{y}
Thus
Cavy =0« E{l‘y} = E{.T}E{y}
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Result
If  and y are independent, then

E{zy} = E{z} E{y}

and = and y are uncorrelated
Note: Converse is not true (in general)
» Converse only holds for Gaussian RVs
» Independence is a stronger condition than uncorrelated

Definition (Orthogonality)

Two RVs are orthogonal if
E{xy} =0

Note: If = and y are correlated, they are not orthogonal
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Example

Consider the correlation between two RV's, x and y, with samples shown in a
scatter plot

1.0 0.8 04 -0.8 -1.0
1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0
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Sequences and Vectors of Random Variables

Definition (Vector Distribution)
Let {x} be a sequence of RVs. Take N samples to form the random vector

X = [(Tl,xz,..‘,l’N]T

Then the vector distribution function is
FX(XO) Pr{z; Sx?,xggmg,...,x]vgm%,}

2 Pr{x < x"}
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The density function is given by

9NV
o 8:613392 .. .8:19]\]

fx(x)

e PPN O deday.d
W) = [ [T [ pdadas oy
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Properties:
Fx([o0,00,--,00]") = 1
N / e = 1
Fx([r1,m9,-++,— an]t) = 0
Also
F([oo,22,23, - ,an]") = F([va,3,,2n]")
me([$17m2,$3,~~',CCN]T)dﬂfl = f(lzz,23,- z2N]")

» Setting x; = 0o in the cdf eliminates this sample

» Integrating over (—o00,00) along z; in the pdf eliminates this sample
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Joint Distribution
Definitions (Joint Distribution and Density)

Given two random vectors x and y, the joint distribution and density are

Fry(x"y") = Pr{x<x’y <y}
aNﬁMny(XQ’)
0x10x9 -+ O NOY10Y2 -+ - OYym

fX)’(Xay) =

Definition (Vector Independence)

The vectors are independent iff
ny(XaY) = FX(X)F}’(Y)

or equivalently

fxy(xay) = fx(X)fy(y)
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Expectations & Moments

Objective: Obtain partial description of process generating x
Solution: Use moments
The first moment, or mean, is

my = F{x} = [m,ma,. T

P e

=>mp = /_O:o/_o:o---/_o:oxk-fx<x)d$1d$2---dl‘]\r
= /_O:Ofl?kfa:k(fﬂk)dﬂﬂk

——
1} marginal distribution of zy,
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Definition (Correlation Matrix)

A complete set of second moments is given by the correlation matrix

R, = E{xx/}= E{XX*T}

B{le1’} Elziad) - E{airk)
| Blewt) E{nl) - Blaary)
Elenat}) Elanzs) - E{anl’}

Result
The correlation matrix is Hermitian symmetric

R = (E{xx"})"
= B{(xx")"}
= E{xx"} =Ry
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Definition (Covariance Matrix)

The set of second central moments is given by the covariance

Cx = BE{(x—my)(x—my)"}
= BE{xx} —myE{z"} — E{x}m, " + m,m, "

= Rx - mxmxH

Result
The covariance is Hermitian symmetric

C,=C,H
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Result
The correlation and covariance matrices are positive semi-definite

alRya>0 af’Cya>0 (Va)

To prove this, note

afRya = al’E{xx"}a
— FE{a’xxfa}
— B{(ax)(allx)"}
~ B{lalx?} >0

For most cases, R and C are positive define
alRya>0 af'Cya>0

= no linear dependencies in Ry or Cy
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Definitions (Cross-Correlation and Cross-Covariance)

For random vectors x and y,

. A
Cross-correlation = Ry, = E{xy'’}

Cross-covariance 2 Cxy = E{(x—my)(y—my)7}
H

Ryy —mymy

Definition (Uncorrelated Vectors)

Two vectors x and y are uncorrelated if
H
Cxy = Rxy —mxmy™ =0

or equivalently

Ryy = E{xy} = mymy”
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Note that as in the scalar case

independence = uncorrelated

uncorrelated = independence
Also, x and y are orthogonal if
Ryy = E{xy} =0
Example
Let x and y be the same dimension. If
Z=X+Yy
find R, and C,
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By definition

R, = B{(x+y)(x+y)"}
= B{xx"}+B{xy"}+ E{yx"} + E{yy"}

Similarly
C,=Cx+Cxy +Cyx +Cy

Note: If x and y are uncorrelated,
R,=Rx+ mxmyH + mymxH +Ry

and
C,=Cx+GCy
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Tchebycheff Inequality

For any € > 0,
o2
Pr(le—nl> ) <%
To prove this, note
n—e %)
Pr(lz —n|>¢€) = f(x)dz + ) f(x)dx
—00 n+e
= f(z)dz

Also note that

= [ -l

f()
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’> [ (r-n)?fla)de

|[z—n|>e

Using the fact that |z —n| > € in the above gives

o2 > € / f(z)dz
|z—n|=e
— Peffr—y| = )

Rearranging gives the desired result
o\ 2
= Pr{lo—nl= < (%)
€

QED

FSAN/ELEG815
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Markov's Inequality

If z is a non-negative RV, then for all a >0

E{ﬂf}

Pr{z >a} < ——

Proof:

[0.9]

Pr{z >a} = f(z)dx

IA

/OO §f(:z;)dx since x > a

a

VAN
\
o\
8
S
g
=
QL
S




Probability ARE FSAN/ELEG815

Chernoff’'s Bounding Method

Let z be a RV on R. Then for all e >0

Pr{z > ¢} < m>1(r)1 e *E{e’}.

To prove this for any s > 0:
Pr{z > e} = Pr{sz> se}
= Pr{e®" >¢*}
Using Markov's Inequality:

¢ Eie™}
Pr{z > e} =Pr{e® > ¢’} < T

= e *“E{e*}.
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Hoeffding's Inequality

Consider Sy = ZijL x; where x1,...,xn are independent RV’s on R such that
a; < x; < b;. Then, for any € >0

Pr{|Sy — E{Sy}| > ¢} < 2¢72¢/X(i-a)’

Lemma 1:

Let x be a random variable on R with E{z} =0 and a <z <b. Then, for all
s>0

E{e*} <ef *(b-a)?/8 (%)
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Hoeffding's Inequality
Apply Chernoff's bounding method i.e.:

Pr{z > ¢} <mingsg e *“E{e’})
to the random variable: Sy — E{Sn},

Pr{Sy —E{Sn}>¢} < min e_seE{eS(SN_E{SN})}

s>0
< min e *F es<zi\;1(mi_E{xi})>
- s>0
N
since the x; are independent < min e *¢ H E{es(“’i_E{xi})}
s>0

1=1

Applying Lemma 1 () to RV y; = z; — E{x;} where E{y;} =0:

E{es(wi—E{xi})} < 632(bi—ai)2/8
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Hoeffding's Inequality

Substitute E{es(@—F{mih)} < ¢5*(i=a:)*/8 i the previous Chernoff's bound:

N
PriSy —E{Sn}>¢} < min e [[ E{e*®iFleih}
s i=1

we get:
N 2 b 2 ]
Pr{Sny —E{Sn}>¢} < m>161 eI e (bi—ai)*/
5 i=1

N
— min 6_56“‘2@':1(52/8)(1%‘—%)2
s>0

It can be shown that the minimum is at s = 4¢/ > (b; — a;)>.
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Hoeffding's Inequality

Pr{Sy — E{Sn} > €} < e 5+ Lita (5°/8) (bi—ai)?
Substituting the minimum (s = 4¢/ >N (b; — a;)?):

Pr{Sy — E{Sx} > ¢} < e 2/Elilbima)’
If we consider —x1,...,—x instead, we obtain:

Pr{Sy — B{Sy} < —¢} < e 2/ Lili(bima)’®
By combining the two bounds, we finish the proof:

Pr{|Sy — E{Sy}| = ¢} < 2¢72/Ti (i)’
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Hoeffding's Inequality
Example:
Find the Hoeffding's Inequality of a random variable z; '~ Ber(p).

Solution:
Consider the Hoeffding's Inequality:

Pr{lSy —E{Sn}| > ¢} < 9e—26¢%/ il (bi—ai)®

Since x; ~ Ber(p), then a; =0, b; =1, Sy = Zi]\il x; ~ Bin(N,p), and
E{Sn} = Np. Taking e = N¢ and applying Hoeffding's Inequality:

N
Pr{

> x;—Np

zNé} < 9e 28/ 3L, (1-0)°

sz

2
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Hoeffding's Inequality

Plly — pl >4

Pr

3
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Nizl Z

Prilv—p|>6) < 22N

|

26} < 2672]\752

—$=0.02 -
—0=0.05 -
5=0.1
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Proof of Lemma 1:

Show that if E{z} = 0 then E{e**} <5 =9%/8 for all s > 0.
If x € [a,b] then the convexity of the function f(z) = e implies that

f)

e < af(b)+(1-a)f(a), 0<a<l
sx sb sa - —a af(b)+(1—a)f(a
et < ae®+(1—a)e’, smcea:b ,
—a
s r—a 4 b—x ‘
< 7 1
‘ o b_ae +b_6le | z=ab+(1—-a)a
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Proof of Lemma 1:

swé x_aesb+b_xesa
b—a b—a

Using the fact that E{z} = 0 we obtain:

(&

E{esx} < 50 _ et

a

Thus,
E{e*} < e9(s)

where g(s) = sa+1In(b—ae’®=) —In(b—a).
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Proof of Lemma 1:

g(s) = sa+In(b—ae*®=) —In(b—a)

By Taylor's theorem:

o(5) = 9(0) +4/O)s+ g (€), 0<€<s

o . 32(b—a)2
Substituting, we get:  g(s) < —-—g—.

Substituting in previous demonstration (i.e. E{e**} < e9(9))

— E{esx}<e b—a)®/8 (%)
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